WIENER NUMBER OF SOME EDGE DELETED GRAPHS

S.Sujitha ${ }^{1}$, J.Deensha ${ }^{2}$, Lizma Herina John ${ }^{\mathbf{3}}$
Department of Mathematics
Holy Cross College(Autunomous)
Nagercoil-629004.
Email: 1. sujivenkit@gmail.com
2. deensha50@gmail.com
3. lizmaherina27@gmail.com

Abstract

Let G be a connected graph. If $u, v \in V(G)$, then $d(u, v)$ is the length of the shortest $u-v$ path in G. The wiener number $W(G)$ of a graph G is defined as $\mathrm{W}(G)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)$ where the summation extends over all possible pairs of distinct vertices u and v in $V(G)$. In this paper, we determine the wiener number for graphs obtained from a complete graph by deleting some of its edges. The induced subgraph of the deleted edges form barbell, tadpole, complete bipartite, lollipop and bistar.

Keywords: distance, wiener number, barbell, tadpole, lollipop.
AMS Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic definitions and terminologies we refer to $[1,2,4]$. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. The wiener number $W(G)$ of a graph G is defined as $\mathrm{W}(G)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)$ where the summation extends over all possible pairs of distinct vertices u and v in $V(G)$. This concept was first introduced by American chemist Harold Wiener in 1947. He used wiener number as one of the structural descriptors for acyclic organic molecules in chemistry. But, the definition of the wiener number in terms of distance between vertices of a graph was first given by Hosoya in 1969. Later, various authors studied this concept in [3]. A clique in a graph G is a maximal complete subgraph of G. A complete multi-partite graph is a graph G whose vertices can be partitioned into sets so that any two vertices u, v of G are adjacent if and only if u and v belongs to different sets of the partitions. It is denoted by $K_{n_{1}, n_{2}, \ldots, n_{k}}$. A Barbell graph is the
simple graph obtained by connecting two copies of a complete graph K_{m} by a bridge. It is denoted by B_{m} or $B\left(K_{m, m}\right)$. The lollipop graph is the graph obtained by joining a complete graph K_{n} to a path graph P_{1}, with a bridge. It is denoted by $L_{m, 1}$. A friendship graph F_{m} is a graph which consists of m triangles with a common vertex. A Tadpole graph is the graph obtained by joining the cycle C_{m} to a path P_{1} with a bridge and is denoted by $T_{m, 1}$. A bistar is a tree obtained from the graph K_{2} with two vertices u and v by attaching m pendent edges in u and m pendent edges in v and is denoted by $B_{m, m}$. Throughout this paper G denotes a connected graph with at least two vertices.

2. The wiener number of some edge deleted graphs

Definition 2.1. Let G be a complete graph of order n. Let $K_{m_{1}, m_{2}}$ be a complete bipartite subgraph of K_{n} on $m_{1}+m_{2}$ vertices. Then $G\left(n, m_{1}, m_{2}\right)$ is the graph obtained from K_{n} by deleting the edges of $K_{m_{1}, m_{2}}$.

Theorem 2.2. $W\left(G\left(n, m_{1}, m_{2}\right)\right)=\frac{n(n-1)}{2}+m_{1} m_{2}, n \geq 4$.

Proof. Consider the complete graph $G=K_{n}$. Delete the edges of a complete bipartite subgraph from K_{n}, then the resultant graph $G\left(n, m_{1}, m_{2}\right)$ contains m_{1} vertices which are at a distance two with m_{2} vertices and at a distance one with $n-m_{2}-1$ vertices. There are m_{2} vertices which are at a distance two with m_{1} vertices and at a distance one with $n-m_{1}-1$ vertices. The remaining $n-m_{1}-m_{2}$ vertices which are at a distance one with $n-1$ vertices.

Therefore, $W\left(G\left(n, m_{1}, m_{2}\right)\right)=\frac{1}{2}\left[m_{1}\left[2\left(m_{2}\right)+1\left(n-m_{2}-1\right)\right]+m_{2}\left[2\left(m_{1}\right)+1\left(n-m_{1}\right.\right.\right.$ -

$$
\begin{aligned}
& \left.1)]+\left(n-m_{1}-m_{2}\right)(1)(n-1)\right]=\frac{1}{2}\left[2 m_{1} m_{2}-n m_{1}-m_{1} m_{2}-m_{1}+2 m_{1} m_{2}+n m_{2}-\right. \\
& \left.m_{1} m_{2}-m_{2}+n^{2}-n-m_{1} n-m_{2} n+m_{1}+m_{2}\right]=\frac{n(n-1)}{2}+m_{1} m_{2}
\end{aligned}
$$

Definition 2.3. Let K_{n} be a complete graph of order n. Let F_{m} be a friendship subgraph of K_{n} on $2 m+1$ vertices. Then $G(n, m)$ is the graph obtained from K_{n} by deleting the edges of F_{m}.

Theorem 2.4. $W(G(n, m))=\frac{n(n-1)}{2}+3 m, n>5$.

Proof. Consider the complete graph $G=K_{n}$. If the edges of a friendship subgraph are deleted from K_{n}, then the resultant graph $G(n, m)$ contains a vertex which is at a distance two
with $2 m$ vertices and at a distance one with $n-2 m-1$ vertices. Also, there are $2 m$ vertices which are at a distance two with two vertices and at a distance one with $n-3$ vertices. And the remaining $n-2 m-1$ vertices which are at a distance one with $n-1$ vertices. Therefore, $W(G(n, m))=\frac{1}{2}[1[2(2 m)+1(n-m-1)]+2 m[2(2)+$ $1(n-3)]+(n-2 m-1)(1)(n-1)] \quad=\frac{1}{2}[4 m+n-2 m-1+8 m+2 m n-6 m+$ $\left.n^{2}-n-2 m n+2 m-n+1\right]$. Hence, $W(G(n, m))=\frac{n(n-1)}{2}+3 m$.

Theorem 2.5. Let K_{n} be a complete graph of order n. Let $T_{m, 1}$ be a tadpole subgraph on $m+1$ vertices of K_{n}. Let $G(n, m+1)$ be the graph obtained from K_{n} by deleting the edges of $T_{m, 1}$. Then for $n>5, W(G(n, m+1))=\frac{n(n-1)}{2}+m+1$.

Proof. Consider the complete graph $G=K_{n}$. If the edges of a tadpole subgraph are deleted from K_{n}, the resultant graph $G(n, m+1)$ contains a vertex which is at a distance two with three vertices and at a distance one with $n-4$ vertices. There is a vertex (pendent vertex) which is at a distance two with a vertex and at a distance one with $n-2$ vertices. There are $m-1$ vertices which are at a distance 2 with 2 vertices and at a distance 1 with $n-3$ vertices. And the remaining $n-m-1$ vertices which are at a distance 1 with $n-1$ vertices.

$$
\begin{aligned}
& W(G(n, m+1))=\frac{1}{2}[1[2(3)+1(n-4)]+1[2(1)+1(n-2)]+ \\
& \\
& \\
& (m-1)[2(2)+1(n-3)]+(n-m-1)(1)(n-1)] \\
& W(G(n, m+1))=
\end{aligned}
$$

Definition 2.6. Let K_{n} be a complete graph of order n. Let $L_{m, 1}$ be a lollipop subgraph on $m+1$ vertices. Let $G(n, m, 1)$ be the graph obtained from K_{n} by deleting the edges of $L_{m, 1}$.

Theorem 2.7. $W(G(n, m, 1))=\frac{n(n-1)}{2}+\frac{m(m-1)}{2}+1, n>5$
Proof. Consider the complete graph $G=K_{n}$. Delete the edges of a lollipop subgraph from K_{n}. Then the resultant graph $G(n, m, 1)$, there is 1 vertex which is at a distance 2 with m vertices and at a distance 1 with $n-m-1$ vertices.There is 1 vertex (pendent vertex) which is at a distance 2 with 1 vertices and at a distance 1 with $n-2$ vertices. There are
$m-1$ vertices which are at a distance 2 with $m-1$ vertices and at a distance 1 with $n-m$ vertices.And the remaining $n-m-1$ vertices which are at a distance 1 with $n-1$ vertices.

$$
\begin{aligned}
W(G(n, m, 1)) & =\frac{1}{2}[1[2(m)+1(n-m-1)]+1[2(1)+1(n-2)]+ \\
& (m-1)[2(m-1)+1(n-m)]+(n-m-1)(1)(n-1)
\end{aligned}
$$

$W(G(n, m, 1))=\frac{n(n-1)}{2}+\frac{m(m-1)}{2}+1$
Definition 2.8. Let K_{n} be a complete graph of order n. Let B_{m} be a barbell subgraph on $2 m$ vertices. Let $G(n, 2 m)$ be the graph obtained from K_{n} by deleting the edges of B_{m}.

Theorem 2.9. $W(G(n, 2 m))=\frac{n(n-1)}{2}+m^{2}+m+1, n>5$
Proof. Consider the complete graph $G=K_{n}$. If the edges of a barbell subgraph are deleted from K_{n}, the resultant graph $G(n, 2 m)$, there are 2 vertices which are at a distance 2 with m vertices and at a distance 1 with $n-m-1$ vertices. There are $2 m-2$ vertices which are at a distance 2 with $m-1$ vertices and at a distance 1 with $n-m$ vertices. The remaining $n-2 m$ vertices which are at a distance 1 with $n-1$ vertices.

Therefore, $\quad W(G(n, 2 m))=\frac{1}{2}[2[2(m)+1(n-m-1)]+2 m-2[2(m-1)+$ $1(n-m)]+(n-2 m)(n-1)]$

$$
W(G(n, 2 m))=\frac{n(n-1)}{2}+m^{2}-m+1
$$

Definition 2.10. Let K_{n} be a complete graph of order n. Let $B_{m . m}$ be a bistar subgraph on $2 m+2$ vertices. $G(n, m, m)$ be the graph obtained from K_{n} by deleting the edges of $B_{m, m}$.

Theorem 2.11. $W(G(n, m, m))=\frac{n(n-1)}{2}+2 m+1, n \geq 4$
Proof. Consider the complete graph $G=K_{n}$. Delete the edges of a bistar subgraphs from K_{n}. The resultant graph $G(n, m, m)$ there are 2 vertices which are at a distance 2 with $m+1$ vertices and distance 1 with $n-m-2$ vertices. There are $2 m$ vertices which are at a distance 2 with 1 vertex and distance 1 with $n-2$ vertices. And the remaining $n-2 m-2$ vertices which are at a distance 1 with n - 1 vertices. $\quad W\left(G(n, m, m)=\frac{1}{2}[2[2(m+\right.$ 1) $+1(n-m-2)]+2 m[2(1)+1(n-1)](n-2 m-2)(1)(n-1)$ $W(G(n, m, m))=\frac{n(n-1)}{2}+2 m+1$

Definition 2.11. Let K_{n} be a complete graph of order n. Let $S p_{m}$ be a spider subgraph on $2 m+1$ vertices. $G(n, m)$ be the graph obtained from K_{n} by deleting the edges of $S p_{m}$.

Theorem 2.12. $W(G(n, m))=\frac{n(n-1)}{2}+2 m, n \geq 4$
Proof. Consider the complete graph $G=K_{n}$. Delete the edges of a spider subgraphs from K_{n}. Then the resultant graph $G(n, m)$ contains only one vertex which is at a distance two with m vertices and at a distance one with $n-m-1$. There are m vertices which are at a distance 2 with 2 vertices and distance 1 with $n-3$ vertices.There are m vertices (pendent vertices) which are at a distance 2 with 1 vertex and distance 1 with $n-2$ vertices.And the remaining $n-2 m-2$ vertices which are at a distance 1 with $n-1$ vertices. $W(G(n, m))=$ $\frac{1}{2}[1[2(m)+1(n-m-1)]+m[2(2)+1(n-2)]+(n-2 m-2)(n-1)]$ Hence, $W(G(n, m))=\frac{n(n-1)}{2}+2 m$.

References

[1] Buckley F., Harary F., Distance in Graph, Addison - Wesley, Redwood, 1990.
[2] Durgi. B. S, Ramane H. S., P. R. Hampiholi, S. M. Mekkalike, "On the Wiener Index of Some Edge Deleted Graphs." International Journal of Mathematical Sciences and Informatis, Vol. 11, No. 2 (2016), pp 139-148.
[3] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, 2005.
[4] Harary F., Graph Theory, Narosa Publishing House (1998).

